24,913 research outputs found

    Metamorphic testing: a review of challenges and opportunities

    Get PDF
    Metamorphic testing is an approach to both test case generation and test result verification. A central element is a set of metamorphic relations, which are necessary properties of the target function or algorithm in relation to multiple inputs and their expected outputs. Since its first publication, we have witnessed a rapidly increasing body of work examining metamorphic testing from various perspectives, including metamorphic relation identification, test case generation, integration with other software engineering techniques, and the validation and evaluation of software systems. In this paper, we review the current research of metamorphic testing and discuss the challenges yet to be addressed. We also present visions for further improvement of metamorphic testing and highlight opportunities for new research

    A new method for constructing metamorphic relations

    Get PDF
    A fundamental problem for software testing is the oracle problem, which means that in many practical situations, it is extremely expensive, if not impossible, to verify the test result given any possible program input. Metamorphic testing is an approach to alleviating the oracle problem. The key part of metamorphic testing is a set of necessary properties of the software under test, namely metamorphic relations. Metamorphic relations not only help generate test cases, but also provide a mechanism to partially verify the test results without the need of oracle. In most previous studies, metamorphic relations were identified manually by testers in an ad hoc way. There is no systematic methodology that helps us identify metamorphic relations. In this paper, we propose a simple method, namely, the composition of metamorphic relations, for systematically constructing new metamorphic relations based on the already identified metamorphic relations. We conduct a case study and show that new metamorphic relations can be easily constructed by compositing some existing metamorphic relations. It is also observed that the new metamorphic relations are very likely to deliver a higher cost-effectiveness of metamorphic testing than the original metamorphic relations

    Identifying Implementation Bugs in Machine Learning based Image Classifiers using Metamorphic Testing

    Full text link
    We have recently witnessed tremendous success of Machine Learning (ML) in practical applications. Computer vision, speech recognition and language translation have all seen a near human level performance. We expect, in the near future, most business applications will have some form of ML. However, testing such applications is extremely challenging and would be very expensive if we follow today's methodologies. In this work, we present an articulation of the challenges in testing ML based applications. We then present our solution approach, based on the concept of Metamorphic Testing, which aims to identify implementation bugs in ML based image classifiers. We have developed metamorphic relations for an application based on Support Vector Machine and a Deep Learning based application. Empirical validation showed that our approach was able to catch 71% of the implementation bugs in the ML applications.Comment: Published at 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2018

    Metamorphic Testing in Autonomous System Simulations

    Full text link
    Metamorphic testing has proven to be effective for test case generation and fault detection in many domains. It is a software testing strategy that uses certain relations between input-output pairs of a program, referred to as metamorphic relations. This approach is relevant in the autonomous systems domain since it helps in cases where the outcome of a given test input may be difficult to determine. In this paper therefore, we provide an overview of metamorphic testing as well as an implementation in the autonomous systems domain. We implement an obstacle detection and avoidance task in autonomous drones utilising the GNC API alongside a simulation in Gazebo. Particularly, we describe properties and best practices that are crucial for the development of effective metamorphic relations. We also demonstrate two metamorphic relations for metamorphic testing of single and more than one drones, respectively. Our relations reveal several properties and some weak spots of both the implementation and the avoidance algorithm in the light of metamorphic testing. The results indicate that metamorphic testing has great potential in the autonomous systems domain and should be considered for quality assurance in this field.Comment: 8 pages, 5 figures, 48th Euromicro Conference Series on Software Engineering and Advanced Applications (SEAA

    A Template–Based Approach to Describing Metamorphic Relations

    Get PDF
    Metamorphic testing enables the generation of test cases in the absence of an oracle by exploiting relations among different executions of the program under test, called metamorphic relations. In a recent survey, we observed a great variability in the way metamorphic relations are described, typically in an informal manner using natural language. We noticed that the lack of a standard mechanism to describe metamorphic relations often makes them hard to read and understand, which hinders the widespread adoption of the technique. In this paper, we propose a template–based approach for the description of metamorphic relations. The proposed template aims to ease communication among practitioners as well as to contribute to research dissemination. Also, it provides a helpful guide for those approaching metamorphic testing for the first time. For the validation of the approach, we used the proposed template to describe 17 previously published metamorphic relations from different domains and groups of authors, without finding expressiveness problems. We hope that this work eases the diffusion and adoption of metamorphic testing, contributing to the progress of this thriving testing technique.Comisión Interministerial de Ciencia y Tecnología TIN2015-70560-RJunta de Andalucía P12-TIC-186
    corecore